Build an AI Agent From
A practicS %amhoduction

Zardar Khan - Sunnybrook Research Institute

What We're Building

KEY CONCEPTS
An agent that can read files, extract structured data, and

: . Tool Calling
answer questions using natural language.

LLM decides which function to invoke

Tool Loop
"How much am | spending on gas?"

Iterate until task is complete
— Agent reads CSV, writes SQL, returns: $134.70

Structured Output

Constrain LLM to return valid schemas

Same pattern applies to: clinical reports, DICOM metadata, pathology Composability

notes, registry forms Build complex behavior from simple tools

Start Simple: Chat with Memory

claudette: lightweight wrapper for Anthropic SDK

from claudette import *

chat = Chat(models[2], sp="You are a helpful assistant.")
chat("I'm Zardar")

— "Nice to meet you, Zardar!"

chat("What's my name?")

— "Your name is Zardar, as you just told me!"

Chat maintains conversation history .
System prompt sets behavior
Each call appends to the message list. The model sees the full
PP ge . The sp parameter defines the assistant's role and constraints.
context.

claudette from answer.ai - github.com/AnswerDotAl/claudette

Give Claude Abilities: Tools

HOW IT WORKS
1. DEFINE APYTHON FUNCTION
Claudette uses Python reflection to extract:
def get_customer_info(

Function name, parameter types and names
customer_id: str # ID of customer

) -> dict:

"Retrieves customer details"

Docstrings and inline comments

Return type annotations

return customers[customer_id]

This becomes a JSON schema sent to the API.

2. PASS TO CHAT Claude reads it and decides when and how to call your function.

chat = Chat(mdl, tools=[get_customer_info]) 4 Key Insight

Good docstrings = better tool selection

Tool Calling in Action

r = chat('Can you tell me the email for customer C1?")

print(r.stop_reason) # — 'tool_use'
r.content

Claude's response:

[ToolUseBlock(
name='get_customer_info',
input={'customer_id": 'C1"}

)l

stop_reason = 'tool_use' ToolUseBlock We execute it
Claude is requesting we run a tool, not giving a Contains which function to call and with what Our code runs the function, returns result to
final answer. arguments. Claude.

The model doesn't execute code. It returns structured instructions. You control what actually runs.

The Tool Loop: Automate the
Back-and-Forth

ONE LINE DOES IT ALL
THE LOOP

r = chat.toolloop(prompt)

1. Send prompt to model
l # 2. If tool_use then execute function

3. Send result back to model

MODEL: tool_use get_customer_info(C1) # 4. Repeat until end_turn

!
"Cancel order 03 and confirm status" calls cancel_order, then
!

get_order_details, then responds.

MODEL: end_turn "The email is john@..."
Error recovery

If a tool fails, model sees the error and can try a different approach.

1

Chat

maintains conversation history

CHECKPOINT

So far we've
learned:

2

Tools

give Claude real-world abilities

Now let's compose these into something useful.

3

Toolloop

automates multi-step execution

Building Blocks: File Operations

INACTION

SIMPLE TOOLS, BIG IMPACT
"What's in the smb data folder?"

def list_files(fp: str) -> L: — list_files('drive/.../smb')
"List files in directory" Returns: chg-nov24.ixt, cc-nov24.txt, sav-nov24.txt
return L(Path(fp).iterdir())

Model reasons about file names:

f fil : -> str:
def read_file(fname: sir) -> str "chq = chequing, cc = credit card, sav = savings... these appear to be bank statement files
"Read text content of file"

return Path(fname).read_text() CngEERe by Eeeulil]

The power of composability

3 lines each. The model handles all the decision-making.
With just list_files + read_file, the model can explore any directory structure and understand

its contents.

Structured Outputs:

Data

DEFINE THE SHAPE YOU WANT

from pydantic import BaseModel, Field

class StatementMetadata(BaseModel):
source_file: str
bank_name: str
account_type: str
account_holder: str
opening_balance: Optional[float]
closing_balance: Optional[float]

From Text to

THE API CONSTRAINS OUTPUT

response = client.beta.messages.parse(
model="claude-sonnet-4-5",
output_format=StatementMetadata,
messages=[...]

)

response.parsed_output # < typed object

Why this matters
No regex parsing of LLM output

Guaranteed valid JSON matching schema

Direct integration with your data pipeline

Pydantic = Python's data validation library. Define types, get validation free.

Same pattern for: ICD codes, RadLex terms, DICOM fields, pathology staging...

Tools Can Call Models

A tool can itself use an LLM for complex processing. The outer agent orchestrates; the inner call extracts.

def extract_statement_metadata(filepath: str) -> dict:
"Extract structured metadata from bank statement file."

text = Path(filepath).read_text()

response = client.beta.messages.parse(
output_format=StatementMetadata,
messages=[{"content": f"Extract metadata:\n{text}"}]

)

return response.parsed_output.model_dump()

USER AGENT TOOL RESULT
"Extract metadata for the — list_files then finds — extract_statement_metadata() — {bank: "Tangerine", ...}
chequing file" chg-nov24.txt

Lego blocks. Each tool is self-contained. The orchestrating agent doesn't know (or care) that extraction uses an LLM internally.

The Full Toolkit

FILE OPERATIONS EXTRACTION ANALYSIS
list files() parse transactions () inspect_csv ()
Browse directories Text — structured records Preview shape & columns
read file() categorize transactions () read csv ()
Read text content Add category labels Load full data
save to csv () extract metadata () query csv ()
Persist structured data Header info — schema SQL via DuckDB 4

9 tools, ~100 lines total. The model decides which to use, in what order, based on the user's natural language query.

System prompt guides behavior:

"You are a bookkeeping assistant. Data is in 'drive/.../smb'. Always start by listing files."

"How much am | spending on healthcare and where?"
Model responds:

Total Healthcare Spending: $82.30 (November 2024)

Model generates SQL: : g
You made 4 healthcare-related purchases at 2 different locations:

(amount) as

total healthcare spending Bate; Location Amount

data Nov 4 Hone Fitness, Toronto, ON $22.54
DuckDB returns:
category LIKE OR —> Nov 10 Hone Fitness, Toronto, ON $22.54

category LIKE OR subcategory Nov 10 Shoppers Drug Mart #12, Toronto, ON ~ $14.68

LIKE OR subcategory LIKE)
Nov 28 Hone Fitness, Toronto, ON $22.54
OR subcategory LIKE

Breakdown by location:

OR subcategory LIKE
» Hone Fitness (Toronto): 3 visits, $67.62 total

« Shoppers Drug Mart #12 (Toronto): 1 visit, $14.68 total

Your healthcare spending is primarily on fitness (Hone Fitness
membership/services), with one pharmacy purchase at Shoppers Drug Mart.

(filepath: str, sql: str) -> str:
df = duckdb.query(f)-df()

result = duckdb.query(sql).df()
result.to_markdown()

No server. Reads CSVs directly. Fast. Model generates SELECT only. Safe. Wrong column name? Model retries with schema.

Multi-Step Reasoning

"How much am | spending on coffee AND takeout?"

query_csv — tries

Returns empty. Categories don't match.

query_csv —

Discovers: Dining, Entertainment, Financial, Groceries...

query_csv — checks subcategories under 'Dining'
Finds: Starbucks, Uber Eats, 6IXSIDE BURGER, Hero Burger...

query_csv — final aggregation with CASE statement
Coffee (Starbucks): $52.33 - Takeout/Dining: $218.63

The model explored the schema when its first attempt failed. No hard coded logic. It figured out the data structure and adapted.

"You're spending $270.96 on coffee and takeout combined."

Why Build Agents?

TRADITIONAL SCRIPT

You write:

Exact file paths

Regex for each format variation
Column name mappings

Error handling for each edge case

Hardcoded category mappings

New bank format? Rewrite the parser.

AGENT APPROACH

You provide:
Simple, composable tools

Output schemas (Pydantic)

High-level instructions

Model handles:

v File discovery & format inference
v/ Schema exploration

v Query construction & retry

New bank format? Just works.

Leverage intelligence, not just automation. The model's reasoning handles the variability you'd otherwise hardcode.

Key Takeaways

e Agents = LLM + Tools + Loop

The model decides what to call; you control what runs.

e Build small, compose big

Simple 3-line tools combine into powerful workflows.

e Structured outputs eliminate parsing

Pydantic schemas guarantee valid, typed data.

e Good docstrings = good tool selection

The model reads your documentation. Write it well.

This entire demo: exploration, iteration, and final run — under $5 in API credits.

Resource
S

Claudette Library

github.com/AnswerDotAI/claudette

Anthropic Tool Use Docs

docs.anthropic.com/en/docs/build-with-claude/tool-use

This Notebook

Available on request

