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What We're Building

An agent that can read files, extract structured data, and 

answer questions using natural language.

"How much am I spending on gas?"

→ Agent reads CSV, writes SQL, returns: $134.70

Same pattern applies to: clinical reports, DICOM metadata, pathology 

notes, registry forms

KEY CONCEPTS

Tool Calling
LLM decides which function to invoke

Tool Loop
Iterate until task is complete

Structured Output
Constrain LLM to return valid schemas

Composability
Build complex behavior from simple tools



Start Simple: Chat with Memory

# claudette: lightweight wrapper for Anthropic SDK

from claudette import *

chat = Chat(models[2], sp="You are a helpful assistant.")

chat("I'm Zardar")

→ "Nice to meet you, Zardar!"

chat("What's my name?")

→ "Your name is Zardar, as you just told me!"

Chat maintains conversation history

Each call appends to the message list. The model sees the full 

context.

System prompt sets behavior

The sp parameter defines the assistant's role and constraints.

claudette from answer.ai · github.com/AnswerDotAI/claudette



Give Claude Abilities: Tools

1. DEFINE A PYTHON FUNCTION

def get_customer_info(

customer_id: str # ID of customer

) -> dict:

"Retrieves customer details"

return customers[customer_id]

2. PASS TO CHAT

chat = Chat(mdl, tools=[get_customer_info])

HOW IT WORKS

Claudette uses Python reflection to extract:

Function name, parameter types and names

Docstrings and inline comments

Return type annotations

This becomes a JSON schema sent to the API.

Claude reads it and decides when and how to call your function.

⚡ Key insight
Good docstrings = better tool selection



Tool Calling in Action

r = chat('Can you tell me the email for customer C1?')

print(r.stop_reason) # → 'tool_use'

r.content

# Claude's response:

[ToolUseBlock(
name='get_customer_info',
input={'customer_id': 'C1'}

)]

stop_reason = 'tool_use'
Claude is requesting we run a tool, not giving a 

final answer.

ToolUseBlock
Contains which function to call and with what 

arguments.

We execute it
Our code runs the function, returns result to 

Claude.

The model doesn't execute code. It returns structured instructions. You control what actually runs.



The Tool Loop: Automate the 
Back-and-Forth

THE LOOP

USER: "Get customer C1's email"

↓

MODEL: tool_use get_customer_info(C1)

↓

EXECUTE: returns {email: "john@..."}

↓

MODEL: end_turn "The email is john@..."

ONE LINE DOES IT ALL

r = chat.toolloop(prompt)

# Handles the entire cycle:
# 1. Send prompt to model
# 2. If tool_use then execute function
# 3. Send result back to model
# 4. Repeat until end_turn

Multi-step reasoning
"Cancel order 03 and confirm status" calls cancel_order, then 

get_order_details, then responds.

Error recovery
If a tool fails, model sees the error and can try a different approach.



CHECKPOINT

So far we've 
learned:

1
Chat

maintains conversation history

2
Tools

give Claude real-world abilities

3
Toolloop

automates multi-step execution

Now let's compose these into something useful.



Building Blocks: File Operations

SIMPLE TOOLS, BIG IMPACT

def list_files(fp: str) -> L:
"List files in directory"
return L(Path(fp).iterdir())

def read_file(fname: str) -> str:
"Read text content of file"
return Path(fname).read_text()

3 lines each. The model handles all the decision-making.

IN ACTION

"What's in the smb data folder?"

→ list_files('drive/.../smb')

Returns: chq-nov24.txt, cc-nov24.txt, sav-nov24.txt

Model reasons about file names:

"chq = chequing, cc = credit card, sav = savings... these appear to be bank statement files 

organized by account type."

The power of composability
With just list_files + read_file, the model can explore any directory structure and understand 

its contents.



Structured Outputs: From Text to 
Data

DEFINE THE SHAPE YOU WANT

from pydantic import BaseModel, Field

class StatementMetadata(BaseModel):
source_file: str
bank_name: str
account_type: str
account_holder: str
opening_balance: Optional[float]
closing_balance: Optional[float]

Pydantic = Python's data validation library. Define types, get validation free.

THE API CONSTRAINS OUTPUT

response = client.beta.messages.parse(

model="claude-sonnet-4-5",
output_format=StatementMetadata,
messages=[...]

)

response.parsed_output # ← typed object

Why this matters

No regex parsing of LLM output

Guaranteed valid JSON matching schema

Direct integration with your data pipeline

Same pattern for: ICD codes, RadLex terms, DICOM fields, pathology staging...



Tools Can Call Models

A tool can itself use an LLM for complex processing. The outer agent orchestrates; the inner call extracts.

def extract_statement_metadata(filepath: str) -> dict:
"Extract structured metadata from bank statement file."

text = Path(filepath).read_text()
response = client.beta.messages.parse(

output_format=StatementMetadata,
messages=[{"content": f"Extract metadata:\n{text}"}]

)
return response.parsed_output.model_dump()

USER

"Extract metadata for the 

chequing file"

→
AGENT

list_files then finds 

chq-nov24.txt

→
TOOL

extract_statement_metadata() →
RESULT

{bank: "Tangerine", ...}

Lego blocks. Each tool is self-contained. The orchestrating agent doesn't know (or care) that extraction uses an LLM internally.



The Full Toolkit

FILE OPERATIONS

list_files()
Browse directories

read_file()
Read text content

save_to_csv()
Persist structured data

EXTRACTION

parse_transactions()
Text → structured records

categorize_transactions()
Add category labels

extract_metadata()
Header info → schema

ANALYSIS

inspect_csv()
Preview shape & columns

read_csv()
Load full data

query_csv()
SQL via DuckDB ⚡

9 tools, ~100 lines total. The model decides which to use, in what order, based on the user's natural language query.

System prompt guides behavior:
"You are a bookkeeping assistant. Data is in 'drive/.../smb'. Always start by listing files."



Natural Language → SQL → 
Answer

"How much am I spending on healthcare and where?"

Model generates SQL:
SELECT SUM(amount) as 

total_healthcare_spending 

FROM data 

WHERE category LIKE '%Healthcare%' OR 

category LIKE '%Health%' OR subcategory 

LIKE '%Healthcare%' OR subcategory LIKE 

'%Health%' OR subcategory LIKE 

'%Pharmacy%' OR subcategory LIKE 

'%Medical%'

→
DuckDB returns:

-82.30
→

Model responds:

def query_csv(filepath: str, sql: str) -> str:
"Execute SQL query on CSV using DuckDB. Table is named 'data'."

df = duckdb.query(f"SELECT * FROM '{filepath}'").df()
result = duckdb.query(sql).df()
return result.to_markdown()

DuckDB = in-process SQL
No server. Reads CSVs directly. Fast.

Read-only by design
Model generates SELECT only. Safe.

Self-correcting
Wrong column name? Model retries with schema.



Multi-Step Reasoning

"How much am I spending on coffee AND takeout?"

1 query_csv — tries 
Returns empty. Categories don't match.

2 query_csv — 
Discovers: Dining, Entertainment, Financial, Groceries...

3 query_csv — checks subcategories under 'Dining'
Finds: Starbucks, Uber Eats, 6IXSIDE BURGER, Hero Burger...

4 query_csv — final aggregation with CASE statement
Coffee (Starbucks): $52.33 · Takeout/Dining: $218.63

The model explored the schema when its first attempt failed. No hard coded logic. It figured out the data structure and adapted.

"You're spending $270.96 on coffee and takeout combined."



Why Build Agents?

TRADITIONAL SCRIPT

You write:

Exact file paths

Regex for each format variation

Column name mappings

Error handling for each edge case

Hardcoded category mappings

New bank format? Rewrite the parser.

AGENT APPROACH

You provide:

Simple, composable tools

Output schemas (Pydantic)

High-level instructions

Model handles:

✓ File discovery & format inference

✓ Schema exploration

✓ Query construction & retry

New bank format? Just works.

Leverage intelligence, not just automation. The model's reasoning handles the variability you'd otherwise hardcode.



Key Takeaways
Agents = LLM + Tools + Loop
The model decides what to call; you control what runs.

Build small, compose big
Simple 3-line tools combine into powerful workflows.

Structured outputs eliminate parsing
Pydantic schemas guarantee valid, typed data.

Good docstrings = good tool selection
The model reads your documentation. Write it well.

This entire demo: exploration, iteration, and final run — under $5 in API credits.



Resource
s

Claudette Library
github.com/AnswerDotAI/claudette

Anthropic Tool Use Docs
docs.anthropic.com/en/docs/build-with-claude/tool-use

This Notebook
Available on request


